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then T is bounded dissipative and has a fixed point. This
applies , for example , to stable neutral functional differential
equations and cer tain retarded functional differential equations of
infinite delay. These results are , contained in Hale [5].

The above result requires the stronger assumption of compact
• dissipative . The principle result of this paper will be to get

similar/results under the weaker assumption of point dissipative . We
will need to add additional hypotheses on the space and the
operator T. We will then show how these hypotheses are naturally
satisfied for stable neutral functional differential equations.

The paper will be divided into four sections. The first will
contain various definitions . The second will contain an abstract
theorem relating point dissipative in one space to bounded
dissipative in another, and to the existence of a fixed point.
The third section will apply the result to stable neutral functional
differential equations. The final section gives applications to
retarded functional differential equations with infinite delay .
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STABILITY AND FIXED POINTS OF POINT DISSIPATIVE SYSTEMS

Paul Massa tt

Abstract: It is known that if T: X + X is complçtely continuous
no

• or if there exists an n0 > 0 such that T is completely con-

tinuous , then T point dissipa tive implies T is bounded

dissipa tive and has a fixed point (see Billotti and LaSal le [1]) .

This result is used , for example , in studying retarded functional

differential equations.

This result has been extended by Hale and Lopes (8]. They

~4 I get the result that if T •is an a-contraction and compact

dissipative then T is bounded dissipa tive and has a f ixed point.

This app lies , for example , to stable neutral func tiona l differen tia l

• equations and certain retarded functional differential equations

of infinite delay . These results are contained in Hale (5].

~
“
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S
~The -a1~av. result requ ir es the stronger assumption of compac t

dissipative. The principle resul t of this paper will be to get

similar resul ts under the weaker assumption of point dissipative .
_ ~~~~~ 6~~6
-We wif~~jeed~to add addi tiona l hypotheses on the space and the

• operator T. We will then skow-ho~~~hese hypotheses are na turally

• 
satisfied for stable neutral functional differential equations

j and retarded functional differential equations of infinite delay.

The paper will be divided into four sections. The first will

contain various definitions . The second will contain an abstract

theorem relating point dissipative in one space to bounded 
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• .r—>)dissipative in another, and to the existence of a fixed point.

The third section wil l apply the result to stable neutral functional

differential equations. The final section gives applications to

retarded functional differential equations with infinite delay .

This paper is a part of my thesis at Brown University . , I am

especially grateful to Jack K. Hale for his help and supervision

in the preparation of this paper.
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STABILITY AND FIXED POINTS OF POINT DISSIPATIVE SYSTEMS

Paul Massa tt

1. Definitions.

In the following definitions, X will deno te a metric space ,

and .~~~~ will denote the set of bounded subsets of~ X.

• Definition 1.1: The a-measure of noncompactness is a map

a:~~~+ [O ,co) defined by a(B) = inf{d/there is a finite cover

of B with sets in X of diameter less than d}.

Definition 1.2: T: X + X is an a-contraction if there is a

k C (0,1) such that for all B C ~ we have a(TB) < ka(B).

Definition 1.3: T: X + X is a-condensing if for all B C .~~~~

we have a-(TB) < a(B) with equality if and only if cs(B) = 0

Definition 1.4: A measure of noncompactness on X is a map

~: .
~~~~ ~ [O ,°~) with the two proper ties

Ci) 8 (B)  - 0 ’ if and only if Cl(B) is compact and

(ii) 8(B) < 8(C) if B c C.

The definitions of a 8-contraction and 8-condensing map are

analogous to those of an a-contraction and a-condensing map .

Definition 1.5: Let T: X + X and let S be a collection of

sets. A bounded set B c X dissipates S-sets under T if for

— -~~~~~~~
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2

any C C S there is an integer n
0(C) such that T~(C) c B

for n > n0(C). If S =  {{x}/x C X}, we say T is point
dissipative. If S = {J c X/J is compact}, we say T is compact
dissipative. If S contains a neighborhood of any point, we say
T is local dissipative. If S contains a neighborhood of any compact
set , we say T is local compact dissipative. If S contains all

bounded subsets of X , we say T is bounded dissipative or

ultimately bounded.

Remark 1.1: Local dissipative and local compact dissipative are

always equivalent. If T is continuous then local dissipative

and compact dissipative are also equivalent.

Definition 1.6: The orbit of B ,Y ’(B) , for B c X, is defined by

i4’(B) = (J T~ (B)
n=O

Definition 1.7: H: .~~~~ 
-. .~~~~ is a type 2 set opera tor if for

any B € .~~~~~

‘ , H(B) - U{H(A)/A is a finite subset of BI.

Definition 1.8: Let B C ~~~~~~. The orbit of B under H, y~ (B) ,

is defined y~ (B) - U H’~(B).n=O

Definition 1.9: H: ~~~~~ + .~~~~ is asymptotically smooth if, for

any B € ~~ with y~ (B) bounded , there is a compact set J
such tha t H~(B) + J (i.e. for every C > 0 there exists an

such that n > n0 implies H~(B) ~ J + B
~

(O) ,  where B~ (O) is

the ball of radius C centered at 0).

Definition 1.10: A set K € ~~ is stable under H if , for

C >  0, there is a 6 > 0  such that , for any



_ _ _ _  • ‘-~~• W ’ • ~~~~~~~~~~~~~ w n~~~~~’ .,--’ ~ -~~~~~~~~n-’

B ~ K + B6(0), H~ (B) c K + B
~
(O) for n > 0.

Definition 1.11: A set K C .~~~~ is uniform ly asymptotically

stable if it is stable and there is a 6~ > 0 such tha t for any

C > 0 there is an n~ such that B c K + B6 (0) implies
0

Hn(B) c K + B
~

(0) for n > n0.

Definition 1.12: A set J C ~~ is invar ian t under T if TJ = J.

2. A General Theorem.

Theorem 2.1: Let i: X1
C÷ X2 be a compact imbedd ing where

• are Banach spaces with norms j 1
~~~

(
~~
. Let T ,C , and U be

continuous opera tors mapp ing X1 into itself. Denote the topology

of X~ by 9~. Let T - C + U with C a contraction in X

and U: (X 1, ~~) + (X 1, Y~) mapping bounded sets to bounded sets.

Let C(O) — 0. Let B~ — {x € X / 1 1 x 1 1 1< R } .  Then the following

conclusions holds:

(1) If B c B~ and R > 0 then there ex ists a K - K(L ,R)

such that, for any n~ wi th 0 < n* < ~~, then U ~T
m (B) c B~

• 0<m<n

implies U Tm (B) c 4.
0<m<n*

• (2) If T is point dissipative in X2 , then T is bounded

dissipative in X1.

Remark 2.1: It is not necessary to assume that U: (X 1, ~~) +

(X 1, ~~j ) takes bounded sets into bounded sets. The conclusions

are naturally weaker and hold only for those bounded sets whose

INs_Si ,~ _,.-,•,-,_ .__•• ,.• ,•• •• • .• •-• • — • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •__•,&•_fl_ ,• ,• • ~~~~~~~~~~ .•A_z•_•, •- __,_ _.___ • .. •— • • •,-•‘ —•—--, rn __,,- -.~,•,- •, -.. .•,• •..,.• • , —‘--—-‘. ••-• I
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images under U are bounded .

Proof of 1: Let h: R’ + be chosen so that U(X 1 n B~) ~

B
~ (R~l . Suppose B c B~ and U TTh(B) c B~ . Let A € (0,1)

0<m<n*

be the contraction constant for C. Let K(L•,R) = .(l~A)~~ (h(R) + L).

If x € B we can easily show by induc tion U Tm(B) c 4. It
0<m<n*

is obviously true for n = 0. If it is assumed true for n, then

I JT’~~ xI I~ 
< A~ IT’1x1 

~ 
+ h(R)

< A (l-A~~
1 (h(R) + L) + h(R)

< A (l-Ay 1 (h(R) + L) + (h(R) + L)

• < (l-A)~~ (h(R) + L) = 1C(L ,R ) .

Hence , U Tm (B) c 4.
0<m<n*

We shall need the following lemma before proceeding .

Lemma 2.1: Under the hypotheses of Theorem 2.1, there exists a

number n1(L ,R) and a number Q(R) > 0 such that if

U Tm (B) c B’
2 A B~ then U Tm (B) c R • Here we

0cmcn * 
0 

n1 (L ,R)cmcn* Q( )

have n1 independent of n~ and Q independent of both n~
and L.

Proof of Lemma: Let .S~ > 0 and Q(R) — (1-A)~~h(R) + 6o.
If B c  X1 is bounded let Il B il i - s up {I )x f l~~/x € B}. Also ,

~tia I • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ •—~~—~~•~•‘
,—• .. 

~~~~~~~~~~~~~~~~~~~~~~~~~
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K(O ,R) = ( 1-A)~~~h(R) . If L < K(O ,R) we obtain the conclusion

by le tting n1 = 0 and app ly ing the same induc tiv e argumen t used

to prove part 1 of the theorem . If L > K(0,R) choose n1nilarge enough so that A (L-K(0 ,R))  < 6~~. Now we notice

1ITB ~ J I 1 < AL + h(R)

= A (L+ 1C( O,R))  + A ( l - A)~~~h(R)  + h(R)

= A ( L-K ( 0 ,R)) + ( l -A ) 1h ( R )

= A ( L - K ( 0 , R)) + K(0 ,R)

By induction we ge t for n <

I IT ”B~ I I , < A~ (L-K(0,R) )  + K( 0,R).

Hence , for n1 < 11 < fl~ we have I I T ”B~ I t , < K(0,R) + 6 o =

This comp letes the proof of the lemma .

• Proof of Part 2 of the Theorem:

Let B~ diss ipa te points in X 1. By par t (1) , it is clear that

orb its of points are bounded in X1. Since the orbit of any point

is eventually dissipated by B~ , Lemma 2.1 implies that B
~ (R)

dissipates points in X1.

We w i l l  now show Y
~~

(B
~ (R) ) is bounded in X1. Let

x C B
~~(R) and y~~(x) c B~ (x)

. We may find a constant C(x) since

point dissipative in X2 implies orbi ts of poin ts are bounded 

0 
_~~~~~~~~~~~~~~~ ‘- ~~~~~~~ .,o , , •  , • ~~~ • :. ,, - . 0
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in X 2. Then we have Y~(x) c B~(Q(R)c) 
by part 1. Let n0(x)

be chosen so that if n > n0 (x) then T’~x C BR . Let n1(x) =

n1(K (Q (R) ,C (x ) ) , R). Let n*(x) = n0 (x) + n1(x) . By continuity we

may choos e 6(x) so that U Tm (B~(X) n B~~~~) c B~ (x~l and
0<m<n * ( x )  ‘

~~~~ ~

U Tm (B~ (x) A B1
~ 1~~) c B~ where

n 0 (x) 0<m<n *(x)

B~ (x) = {y C X~/ II y-xH~ < 6) .  Then part 1 implies

fl B~~~~) c B
~ (Q (R) C(x) ) 

and Lemma 2.1 implies

A B~~~~~) ~ ~~~~~~

Sinc e B
~ (R) is a compact set in X2, the se ts B

~~R)  A B~ (x)

form an open cover for which there is a f ini te subcover

{B
~ (R) n B~ (x 1)}~...1. Let N = max{n*(x i

)}
~~.i. Then it is clear

that ‘r~ (B1 
R ) = U Tm (B l 

R ~ 
since any point in B1,.R re-

• o<m<r ~i 
Q~

turns to B
~ (R) by the Nt~ iteration.

To show any se t B~ is diss ipated by Y
~

(B
~ (R) ) we use the

same type of argument. We form an open cover of B~ by neighbor-

hoods { B~ (x) A B~} such that there is an n*(x )  such that
*(x) 2 1 1(B 6(x) 

(1 BA) 
c BQ(R). Then we take a finite subcover

• {B
~~

(x
~

) A B~)~~1 and let N = max {n *(x 1))~~~1. Clearly n > N

impl ies T1t (B~) c Y’(B
~ (R) ). Since the argument is analogous I

have only sketched the proof. This completes the proof.

Corollary 2.1: Suppose the assumptions of Theorem 2.1, T is

poin t d iss ipa tive in X 2 and 8-condensing in X1 with B a •

ILL a~~~~~~~~~~~~~ A ~~~~~~~~~~~~~~~ • • • _~~~~~~~~~~ • 
00 Ai
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measure of noncompactness sa t i s fy ing  the proper ty 8(A U B) = 8(A)

if B is a finite set. Then there exists a maximal compact

invariant set in X1 which is uniformly asymptotically stable.

Proof: Theorem 2.1 implies that T is bounded dissipative. Let

• B~ diss ipa te bounded sets . Henc e, orb its of bounded s ets are

bounded. Since T is 8-condensing , T is asymptotically smooth

• (see Massatt [10]). For any bounded set B there is a compact

invariant set w c B~ that attracts B. Let ~ = U w • ThenB BE~~ 
B

w c B~ and w is invariant . Since T is 8-condensing this

implies C*~ is precompact.  Clearly ‘~ attracts  all bounded sets .

w is stable since otherwise there would exist an C > 0 and

sequences {xk) c X1, ~~~ 
+ co such that d(x k,w) + 0 and

- 

d(T kxk , w) > C for all k. But {xk
} i s a bounded se t and so

LA) attracts 
~
xk}. This is clearly a contradiction. The fact

that U) is stable and attracts bounded sets clearly implies

• that W is uniformly asymptotically stable. Q.E.D.

Corollary 2.2: Under the hypotheses of Theorem 2.1 , let I be

8-condensing in X1 and poin t diss ipative in X 2 with 8-satis-

fy ing the fo llowing proper ties:

(i) 8(E~ A) = 8 (A) and

(ii) 8(A U B) = max[8(A),8(B)]. Then T has a fixed point.

Proof. It is already known that if T is 8-condensing and

compact dissipative it has a fixed point (see Massatt (10] for

• general measures of noncompactness and Hale and Lopes [8], Nussbaum

[12] for a-measures).

~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ •~ ~~~~~~~~~~~~~~~~~~~~
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Since bounded dissipative implies compact dissipative , the corollary

is proved.

3. Applications to Neutral Equations

In this section , we apply the results of Section 2 to show

that a point dissipative periodic stable neutral functional differ-

ential equation has a periodic solution and that the period map

is bounded di ssipative in W~ . We will also get the existence of

a max imal compact invar ian t set in W~ which is uniformly

asymptotically stable , with respect to the period map I.

Previously , the existence of a fixed point was only known under

the assumption of compact dissipative . Under this assumption , the

existence of a maximum compact invariant set in C which is uni-

formly asymptotically stable is also known . (See Hale [5]).

For r > 0 , let C = C ( [- r ,0 ] ,IR’1) be the space of continuous

• functions from [-r ,0] to 1R~ with the supremuni norm . Let

W’~ = W~ ([~ r ,0 ] ,1Rn ) be the space of absolutely continuous functions

• with derivative essentially bounded. Let

11+11  = sup I~ (°) I  + ess sup I~’(°)I
W1 (-r ,0] (-r ,0]

If x(): [-r ,A) ÷JR~ , A > 0, let x
~
(.): (-r ,0] +]R~ be

0 def ined by xt(O) = x (t+O) for t € [0 ,A), -r < e < 0. Suppose

• D: C +]R~ is l inear and 13$ = $( 0 )  - L$ where L is nonatomic

at zero. Suppose f: 1R~ 
X C +1R~ is completely continuous . A

neu tral func tional d i f feren tial equation (NFDE) is a rela tion
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~~~~~~ 
Dxt = f(t,xt). (3.1)

A stable neutral func tional dif feren tial equation (SNFDE) is

a NFDE for  which D is s table;  that  is , the zero solu tion of

Dx
~ 

= 0 is uniformly asymptotically stable. We often use

properties of these equations without proof. The details can be

found in Hale [ 5].

Our first result deals with continuous dependence in W .

Theorem 3.1: If the solutions of (3.1) are uniquely defined by

the initial data then , for t > t0, the so lution map XD, f (t ,t0) :
• 

W~ -‘ W~ given by X D f (t,tØ)$ = x
~~, x~ = $ , is continuous in $ .

It is also continuous with respect to f with the topology of

unif orm converg ence on bound ed se ts of 1R4 X

In general , there is no continuous dependence with respec t to

(t,t0). This was the motivation for Melvin [11] to discuss

continuous dependenc e in W~ in the weak~*
_ topology.

Proof: To prove the theorem we need only prove it for time t > 0

arb it rar i ly small , since for larger times , we may proceed by steps .

For T sma ll enough we f i r s t prove XD, f.(t ,O): W -. . W .  The

proof is based on the Schauder fixed point theorem. Let

x(~ ) :  [-r , t ]  -~ JR’1 be the solution with in i t ia l  condition $ € W .

Let z ( )  € W [ 0 ,t ] .  Let 13$ = $(0)  + UP with L nonatomic.

Let $ t : [-r , r ]  .JR ” be defined by

_ _ _ _  0 0 0 0 ’ ~~ O~~~~~~~~~~
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1$ (8) ,  0 C [-r ,0]

0 > 0

Let z
~~
: [-r ,O] ÷JR~ be def ined by

• 

• 1z(t+0) 0 + t > 0
z (o) =~~ 

0

t 0 O + t < 0 .  0

If

t < 0
x ( t ) =~~• z(t) + $ ( O )  t > 0

• Is a solution of (3.1) then z(~ ) mus t be a f ixed po int of I

where (Tz)(t) = -Lzt 
- L+~ + L$ + J f ( s ,z5)ds. Since f is

comp letely continuous and L is a contrac tion on z ( )  for sma ll

enough 1 , there exists a I > 0, a clo sed , bounded , convex set 0~

O B c W such that TB c B. Since B is. compact in C and I is

continuous in C we have a f ixed poin t by the Schauder f ixed

point theorem .

To pr ove continuous dependenc e in W~ is a similar argument.

Given an initial function € W and a solution x0( t) defined

on [-r ,r ]  wi th t > 0, xg = $~ , we show con tinuous dependence
wi th respec t to $~ and f . If x(t) = x° (t)  + z(t) + •(0)

• for t € [0,t], xg = 
~~~~

, is the solution of (3.1) with initial

condi tion $~ 
+ $ then z( t) is a f ixed poin t of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~••- ‘• _ O’ ~
•
~~~

• S_ • • • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—• —
~~~~~~

• —
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(Tz) (O ) = -Lzt 
- L$~ + L$ + 

~~~~~~~~ 

f ( s ,x~+$~ +z5) 
-

• f ( s ,x~ )]ds .

For I small enough , L is a contraction on z and there is an

E € such that TB~ ~ B~ . Since 
4 

is compac t in c we

have a fixed point. Futhermore , as 
~~~~ 

+ 0 we may let
Wi

E + 0. Since the fixed point must be in B~ , the uniqueness

implies the continuous dependence on f. The proof for continuous

dependence on f is analogous , and so the proof is omitted.

Theorem 3.2: A SNFDE given by (3.1) with f completely continuous ,

periodic in t of period (*) > 0 and whose solution map

• XD, f 
(w ,0) :  C + C is po int diss ipative , has a periodic solution

of period U) .

Proof: We only prove the theorem under the hypothesis that the

solution map takes bounded sets into bounded sets. The proof

without this hypothesis is just a technical modification using the

remark after Theorem 2.1. 0

Let X1 = C (-r ,0] and X 2 = Wr [-r,0]. Let XD,f 
(w) = X D f  (w ,0)

be the period map . Let TD h (w) be the solution map of the

difference equation Dyt = h(t). According to the theory in

Hale [ 5 ]  there are pro jection maps P and Q = I - P , with Q

f ini te dimensional and P: C ~~
. Y 0 where Y 0 = {$ C C/D$ - 0}.

By the cons truc tion , the maps P and Q map X 1 into itself also.

If we le t TD : Y0 ~ Y0 be the solution map of Dy,~ - 0 then ,
0

since D is s table , I I T~ (~)II < KA~ for some K > 0 , A C (0 ,1).
0

~~0 — - — • —~~~~———— • ~~~~~~~~~ ~~.~~~~~“a~~o, - — .— . & .~~0- - ’ 0~~,000 
~~~

0
~

0 O O • ~~~~~~~~~~~ 
0 ~~~~~‘O ~~~

O_
~~~~~~~~~~~~ ~~~~~ 0 • 

•
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We may now extend TD : y
0 + Y0 to ID : L~ + L°’, and still

0 0
get I ITg (w) 

~ 
< KA~ . This is done by using the uniqueness of the

0 0 0
XD O (w) map. 

, 

Let zk € Y0, y~ C L and 
O
j~r

h1( 
~ 

.I-r~
’0 in C ,

with II Zk l 1 c < I 1Y 0 1 I~ . Then {X1 3 0 (w) f-r~
’
~ 

+ X130 (0)) J y 0

in C. But 
~~~~~~~~~ .1~r

Z < I 1y 0 1 I~,, so for all k we ge t

II~w X~,o (w) 
j
~r~~~ 

= II 1~0
(w) zkII ~ KA l i z ij i ~ K~ I I y 0 IL 0 .

Hence , T~~(W)y0~ I < KA T1
~ 1y 0 1 ~~

Since 13 • is stable we know that XD O (W) is a stable operator

in X2. Also , from the theory in Hale u r n  x~ 0 (w) exponentially
0 

- n+~
approaches a f in ite dimensional subspace of C generated by the

constant functions. We will call this map g(): C + C. g may

also be considered as a map g: X 1 ÷ X 1 which is continuous ,
f ini te dimensional and satisf ies  g :  (X 1, $~) + (X 1, .9j ) maps

bounded sets to bounded sets.

Let C = X 1 3 0 (w )P( ) - g(P( ~)). Because of the exponential

decay , there is an equivalen t norm in X1 where C is a con-

traction.

Now , let U = XD ,f (w) - C. We need to show U: (X 1, ..9~) +

(X 1, $~j ) maps bounded se ts to bounded se ts and that

XD, ~ 
(w) : X 1 ÷ X1 is condensing. Notice U$ - H$ + g(P$) where

H$ is the solution at time w to the equation ~~ Dy~ — h,(t)

with initial condition y0 
- Q$ and h~(t) - f(t,xt) where x~

solves (3.1) with x0 
- $. Recall that we are assuming

—• — 0 _ __~~~~~ ~~~~~~~~~~~~~~~~~~~~~ S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~• - • • •~~~~~ 0 00 ~~~~~~~~ •~~~(~ ~~~~~~~~~~~~~ ._
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XD,f 
(U)) : X2 

+ X2 maps bounded sets to bounded sets. Let B be

a bounded set in X 2 . Since f is completely continuous , this

insures {h,(t)/+ C B} are bounded uniformly on [0 ,w ] .  Since

solutions to Dy~ = h,(t)~ ~~~~~ 

= [Q$ ] are bounded we get

- 

0 U: (X 1,~~~2 ) ÷ (X1, ff~) maps bounded sets to bounded sets.

Next, we wil l show U is completely continuous, in X1. Once

we have this it is fair ly easy to see XD,f (U)): X1 + X1 is an

a-contraction .

For any L > 0 we mus t show U(B~ ) is precompac t. Since

Cl B~ is compact in X2 we also ge t Cl{x
t/t C [0,W], x0 C B~}

1
is compact in X2. This implies {h,(t)/$ C BL} lie in a

A compac t subse t of C[0,U)] s ince h,(t) = f(t,xt). By our con-

tinuous dependence theor em for W this implies Cl H(B~ ) is

compac t in X 1. Since g also has finite dimensional range , we

• get U: X1 
+ X1 is completely continuous .

Hence , XD,f (
w) is an a-contraction in some equivalent norm

in X1. Since all the conditions of Theorem 2.1 are now satisfied

we have a fixed point for XD f  (U ) ) ,  and hence a per iodic solu tion

of (3.1) of period U).

Remark 3.1: Under the assumption that XD,f (w) : X 2 + X2 takes

bounded se ts to bounded se ts , the above proof also shows

X D , f (w) : X1 + X1 is bounded dissipative and there is a maximal

compact invariant set in X1 which is uniformly asymptotically

stable.

Remark 3.2:  The conclusions still hold if the operator D in the

NFDE is w-periodic in t. There are only minor technical changes

• I~0--’_
O ._ • •~~~o , •~ ~~~~~~~~~~~~~~~~~~~ ‘~‘ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _,_~~_~• ~~~~~~~~~~ ‘ 

•~0
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in the proof for this case.

4. Applications to RFDE ’s with Infinite Delay.

In this section, we study the existence of periodic solutions

of the equation

*(t) = f( t ,xt ) (*)

+ nwhere x~ Qi) x (t+ i i ) ,  p € (-c~,0 ] ,  ,~~~: JR X x ÷]R is completely

continuous , X is a space of functions satisf ying certain axioms
0

0 to be specified below , and there is an w > 0 such that -

f(t,$) = f(t+U),$) for all t , P .

Our objective is to show that point dissipative systems have

an w-periodic solution . There are two notions of point dissipative

for these systems . The us ual one is the phase space X and the

other is ]R~ . Let x(t ,$) be the solution of (*) with x ( t ,~P ) — $( t )

for t £ (-oo ,0 ] .  System (*) is point dissipative in JRfl if there is

a bounded set BR ciR
ni such that for any $ C X there is a t0[$] > 0

such that x(t,$) C BR for t >

We will shortly give axioms which will show what phase spaces

are permissible. From the axioms one can deduce that point

dissipative in X implies point dissipative in J~~, but the con-

verse need not hold. An example will  be given later to i l lustrate

this point . Our theorem will  be proved for point dissipative in

H 

• . , t• • ,~~ ~~U flà.á _~~~~~~~~~~~ o. -.., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 0 00
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We will first prove results for the space C~ = ( y ( ) :  (-~ ,0J
÷]R’~/ II x II = sup Ie ’~°x(0)I < ~~, lim J e ’

~~x ( 0 ) I  = 0) with

•
0~ 6C(- .~~,0) 0÷-~

y > 0. This should help the reader understand some of the more

general results which will be given later. Let

W~ ”~
’ = {x(.): (_co ,0] ÷ ]R n / I I x I I = sup Ie~~°x(0)I 

+
0E( -c ° ,0] 0

< ~}

Theorem 4.1: If the system (*) is point dissipative in ]R~ and

X = C0 then if y ’ > y > 0 the period map is bounde-d dissipative

in W~~T
A 

(if it maps bounded sets to bounded sets), there is a

maximal compact invariant set which is uniformly asymptotically

stable in ~~~~~~~~ and it has a fixed point.

Proof: Let X 2 = C~ , X1 = ~~~~~ We will show Theorem 2.1,

Corollary 2.1, and Corollary 2.2 apply. Clearly 1: X1 ~~

i~ a compact imbedding . The solution map shall be denoted Tf (W) .

Clearly T f (w) : X 1 + X1 is continuous. We shall assume Tf(W)

maps bounded sets to bounded Sets (in C0) to avoid technical

details .  Let C$ = - •(0) where $(0) is the constant

function . C is clearly a contraction . Since f is completely

0 continuous , by arguments similar to the last theorem we get

U: (X1, ~~~ 
+ (X1, 7~) maps bounded sets to bounded sets and

that U: + X1 is completely continuous . This also proves

that Tf (W) is an a-contraction . All the hypotheses are now

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 0 00
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satisfied for applying Theorem 2.1, Corollary 2.1, and Corollary

2 . 2 .  Q.E .D.

Remark 4.1: There are many other spaces for which this theorem

could apply . For example, we could let X2 = L2(g) X

{x(): (-~~,0] x J R”/~~g(.)x(.)~~ 2 + IIx(0) II = I I x I I ~ < ~} and

X1 
= W~(g’) ÷]R” = {x(): (-

~ ,
0] ÷ J R~/ I I x I I  _ 

~g’(.)x(.)~~ 2 +

~ IIx(0)H < ~) with 0 < g(t) < g’(t) < Kea~ for

some K > 0 , a > 0, g,g ’ monotonically increasing and

lim g~t) 
= 

00

O The local axioms on the phase space will be derived from

-‘ Schumacher 113]. The global axioms will come for the most past

from Hale and Kato [6].

00 

Local Axioms : Let X be a metrizable topological vector space

of functions x: (-~ ,0J +JR” with Hausdorff equivalence -

If x,y € X we say x - y if there does not exist two open

disjoint sets A and B with x C A and y C B. Let X also

satisfy the following axioms:

(1) For all y C X, a C JR4 , the static continuation y°,

defined by

a 1y(0+u ) ii < -a
y ( ~~) — ~~ y(0) -a <~~~< O

belong to X.

(2) y — z implies ~a — ~
a

_____________________ 00— __s__ ~~~~~
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(3) 6: X ÷ J ~~ defined by 6x = x(0 ) is continuous

(4) The map a C JR4 + y° £ X is continuous for all y C X.

(5) For all I > 0 , the set C1 = {x(t): x is continuous

with support in [-1 ,0]) belongs to X.

(6) If C1 has the sup norm then i: C1 + X, the inclusion

00 map , is continuous for all I > 0. 
.

Axiom 3 is stronger than Schumacher ’s stated assumption but

the author feels Schumacher needs this assumption for his results.

Wi th these assumptions and appropriate hypotheses on f one

can prove existence, uniqueness , continuous dependence , and con-

0 tinuation theorems . (See Hale and Kato (6] or Schumacher (13].)

We- shall always assume f satisfies enough hypotheses to

insure these properties.

Global Axioms:

(1) All continuous bounded functions are in X . The space of

continuous bounded functions with the sup norm will be denoted C8~
(2) Let B° = {x°/x € B). If B c X is bounded and x € B

implies 6(x) = 0 then Ba -‘ 0 as a ÷ ~.

(3) The map i: CB • X is continuous.

Statement-2 may be stronger than one desires, and spaces have

been suggested where (2) does not hold. A weaker version of (2)

which suffices for our purposes is as follows.

(2’) If B c CB is bounded in sup norm and x C B implies

• • . 6(x) - 0 then B0 + 0 in X.

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~
• • 0•~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ , ,~ 0 - - • , -~
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00

Examples.

(1) Let g(,’): (-~~,0] ~~~ be continuous , monotone increasing ,
and there exi~~ K > 0, a > 0 such that- g(t) < Keat. Let

X = {x (~)/x(’): (-~~,0] + P.” is continuous and

li x i l lim g(t)x(t)~ < 00),
tC(-co ,0)

For Axiom 2’ we may replace the condition . g(t) < Keat by

u r n  g(t) = 0.
t+*00

O 0
(2) Let g be monotone increasing with J g  < ~~~~. Let r > 0

and for any locally measurable $: (-00,0] ~~~~ whose restriction

to [-r ,0] is continuous let

to
II $ II = { sup 1$ (o)1P + 

J 

g(0)~$(0)~ 1)d0},
-r<O<0 -

~~~~

Let X denote the space of such functions with II $ II ~, 
< ~~~~. This

satisfies Axiom 2’. For Axiom 2 we may add the condition that

there exists a K > 0, a > 0 such that g(t) < Iceat.

(3) Let X be the space of continuous functions •x(’): (-00,03

+IR” with the compac t open topology .

Theorem 4.2: If the system (*) is point dissipative in P.” and

X is a Banach space satisfying global Axioms 1,2, and 3 then
there is an. w-periodic solution of (*). Also, for some r ’ > 0

the space W~’~ may be compactly imbedded into X and is

• 0 ~~~~~~~~~~~~~~~~~~~~~ 
0~~ -~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

-~~- .•—‘~~~~~ ‘~~~~— ~~~~~~~~~~~~~~ 
•~~~~~~~

•
~~~

•
~~ ‘ ~~~~‘
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bounded dissipative (if the solution map sends bounded sets to

bounded sets) and there exists a compact invariant set which is

uniformly asymptotically stable.

Proof: To prove this result we only need show there is a ‘r > 0

and an imbedding i: C~ ÷ X which is continuous. ‘Then we may

apply Theorem 4.1.

Let B = (x € CB/x(0) 0, lx i < 1). Let h E li x = A > 0

where l i B li x = s u p { I I x I I ~~/x C B). Let a > 0 be chosen so that

I 1B 011 = p0X for some P0 < 1. Choose P 1 so that P0 < P1 < 1

and let y > 0 be chosen so that e~~~ = P1. I claim i: C~ -‘ X

is a continuous imbedding. Since CB is dense in C~ and any

sequence of elements in C~ fl CB which is Cauchy in C~ is also

Cauchy in X. We get that i: Cr’. x is a continuous

imbedding . Q.E.D.

We now ~~te the main result of this section.

Theorem 4.3: If system (*) is point dissipative in R’~ then there

is an w-periodic solution of (*). This theorem removes the re-

striction that X be a Banach space and replaces the condition

that X satisfy global Axiom 2 with the weaker global Axiom 2’.

The proof will use the following two results.

Theorem 4.4 (Horn’s Theorem [9]): Let S0 c S1 c S2 be convex

subsets of a Banach space X with S0,S2 compact and S1 open

in S2. Let I: S2 + X be a continuous mapping such that, for

00 some integer m > 0, u S 1 c S2 for 0 c j  c m - 1 and T3 S1 c S0
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for j > m. Then T has a fixed point.

The proof of the next theorem is identical to the proof of a

Theorem 4.1 in Massatt [10]. The proof will be given here, though.

Theorem 4.5: Let X0 and X1 be two Banach spaces with a con-

tinuous imbedding 1: X0
C* X1. Let -

~~~~~~ 

be the collection, of
00 bounded sets in X1. Let H: ,

~~~~~~ 

+ be a type 2 set operator.

Let B: .
~~~~~~ 

+ (0 ,co) be a map satisfying the following properties.

(1) If B C ~~ then B(B) 0 if and only if Cl (B) iso xl
compact in X1.

00 

(2) Let A ,B € ,
~~~~ 

and let B be a finite set, then

~(A U B) = ~(A). Under these conditions , if H is s-condensing

then H restricted to is asymptotically smooth in X1.

Proof of Theorem 4.4: Let y’(B) C 
~~~~~~~~

. Let 9(B) =

{{xk,nk)/{nk} + 00, Xk € H 
k(B)). Let P({xk,nk}) = {xk}. 

00

Let i~ = sup (~ (Ph/h C 9(B)). Note fl 00

since y4(B) C ,
~~~

. We first show there is an h* = ~~~~~~
9(B) such that 8(Ph*) = n. Let {h~} c 9(B) be a sequence

with 8(Ph
3
) + n. Let = {(xk,nk) C hj/nk > j}. Let

h* - U h. reordered in any way. Then we have h* € 9(B) and

so ii > 8(h*) > 6(h~) = ~(h~) + ii as j + co . Hence, B(h*)

* * * .* * mk00 

* 
Now for, each (Xk,flk) € h there is a set {x~ “'k 

- 

~~~~~ C

“k 1 
* 

.*
H (B) ~ Z such that Xk C H({4 }). Let

O00~ 00~ •_~~~ ~~~~~~~~~~~ ~~~~~j  ~~~~~~~~~~~ t00 ,L~~. ~~~~~~~~~~~~~~~~~~~~~~~~ o.~~~ -~~---•-~~~ ~~~~~~~~~~~ -; 
00 00
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g* = (J {x~*,n* - l}.~ € 9(B). Hence , ii > B(g~) > B(Hg*) >
00 k=l
O = ri with equality if and only if B(g*) = 0. Hence, ri = 0.

Now it is easy to see that there is a compact set J c

such that H”(B) ÷ J in the Hausdorff metric. One may use

Lemma 3.1 in Massatt [10].

Proof of Theorem 4. 3: Let lI x Il be the norm of x in X1 or

the distance from zero under some metr ic  for X. Let l x i  be

the sup norm for  any x € CB . Let BN = {x C CB/x ( O ) = 0, l x i  < N). 00

If A c  X, let h A I l 
= sup{I~ x~~: x € A). Pick 0n 

4 . 0 0  such

that a1 = 0 and I lB~”I I < for n > 2. Let h(t) =
00 

2

~~~~~~~~~~~~~~~~~~~~~ - (a~+t)/(n+l)(a~~1-a~), i .e. h(-a~) = and 
00

h() connects these points with straight lines. Hence, we also

have h ( ’)  s t r i c t ly  increasing . This allows us to def ine  two

Banach spaces.

= {x € C(_co ,0 ] /h (x Il 2 = sup Ih(”)x(ih < 00 ,
0€ ( - c o , 0)

limlh(”)x(.)I = 0).
0+-co

X1 = {x € W~oc (~ co ,O ] , , 1 x h I 1 = sup Ih~~
2(-)x()I +

0 E( - oo ,0)

< 0 0 )

It is clear CB is dense in X2. Any Cauchy sequence of

elements in C3 with Il ” 1 l 2 is Cauchy in x. Hence, we may

consider X2 + X with a continuous imbedding. From Arzela-Ascoli ’s

IFLA I ,,• , ,,,,. • , _ , ,  ~~~~~~~~~~~~~~~~~~~ 
- 

~ ~~~~~~~~~~~~~~~~~~~~~~ 
,.. , . , _ ,  00 •~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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theorem , we also get i: X1
CA~ x2 is a continuous , compact

imbedding .

Under the general axioms imposed on X above , we cannot apply

Theorem 2.1  d i rec t ly ,  nor can we expect to get the solution map

to be bounded dissipative in X1. However, the proof will be in

the same spirit.

As in Theorem 4.1 , let T f (w) : X + X be the solut ion  map

from initial time 0 to time W , Tf(W)$ = x~(.,fl. Clearly ,

Tf(w): X~ + X 1 . We assume T f (W) maps bounded sets to bounded

sets. The removal of this restriction involves only technical

details. Let ($ = $
W~ $ (0) where +(0) is the constant func-

tion. Let U’P = Tf(W)$ 
- C$. Since f is complete ly  continuous ,

by arguments s imilar  to the last  theorem , we get U: (X 1, ~~) +

(X 1, 7]) maps bounded sets to bounded sets. One problem we

immediately encounter is that C may not be a contraction under

any equivalent norm .

The proof that U: X1 X1 is completely continuous is
- identical to the last thenrem . Our goal now will be to show that

in X1 we have sets S0,S1, and S2 satisfying all the hy-

potheses of Theorem 4.2.

Let A c  X1 be any bounded set and let Ar = {x(’): (-r ,0] +

JR”/x( ) is the restriction on (-r ,0] of a function in A}. Let

r CA) = sup{r/Cl Ar is compact in W~ [-r ,0]}. Let RCA ) — 1+~ (A
’)

Hence 8: ,Q
1 ~ [0,°°) is well-defined.

Let X0 {x C W~
0C(~co ,0 ] / II x Il 0 

— supjh(0)]~
’3x(.)i

+ hl h( )”3± (’)h1 00 < co}. The same arguments as before show

~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - 00 _~ _, •• ~~~~~~~~~~~~~ 00•~~~~~~~~~~~~~~~~~ 0 0 O ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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U: X0 ÷ X0 and U: (X0, $~) ÷ (X0, ~~) maps bounded sets to

bounded sets.

Let B1~ dissipate points. Let BR
B c B

~(R)
. If

x ~ Cl B~~(R) then x is clearly dissipated by Cl B~ (R) . Let

Y € Cl B~(R) 
be chosen so that for all t € (-co ,O] we have

h(t)1”3y(t) = Q(r). Let z(”) = y(•.) - y 1(). Then z(-) 
,
> ~

since h(’) is strictly monotone increasing . This defines a set

A = {x(”)/Ix(t)I < z(t) for all t € (-8,0]). Then any

x € C1(B~(R) 
+ A) is also dissipated by Cl B

~ (R)
. Now for every 

00

x € Cl(B
~(R) 

+ A) there exists an n > 0, c > 0 such that

T~ (w){({x} + B~) ~ Cl(B
~(R) 

+ A)) c Cl B
~ (R)

. Because

C1(B
~(R) 

+ A) is compact in X2 there is a finite subcover of such

sets and a max imum N such that n1 corresponding to the finite
+ 0subcover satisfy n~ < N. Then, clearly y (Cl BQ(R) + A) =

N 0U Tf (w)(Cl BA rR) + A). 00

n-i

Now, we may replace A by AN = {x( )/Jx(t)~ < z(t) for all

t € (-N ,0] and x(t) = 0 for t € (-00,-N]). Then we have

N
y ’(Cl B

~(R) 
+ AN) = flT~ (w)(C1 B~(R) 

+ AN). Let D = Cl B
~(R) 

+ AN.

Define the set operator H: .

~~~~~~~ 

+ 
~~ 

by H(B) = co(T
f (w)r

9
(B n D)].

The map H is s-condensing and type 2. H,X0,X1, and 8 sat isfy

all the properties of Theorem 4.4. Hence, H is asymptotically

smooth. Because of the continuity , ii: ,
~~~~ 

+ ,
~~~~ 

defined by

ff( B) - Cl. Co( If ( W ) Y (B n D)J is also asymptotically smooth . Let

B - fl R”(D). This is nonempty, bounded in X0, compact in X1, andn- 1

0 0 0
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24 00

convex. Now, let S~ = Cl B
~(R) 

fl E, S1 
= D fl E, and S

~ 
= E.

Applying Theorem 4.3 we get a fixed point of T ( 6 ) .  This
00 f

implies a periodic solution to (*) of period ‘~~. This completes
the proof. 
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